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Let l<r<p<oc. Approximation theorems for positive contractions in
FL{LP(m), L'(n)) are presented. The characterization of norm atiaining extreme
positive contractions is given. Note that these extreme operators are also exposed
peints of the positive part of the unit bali of £L{(/7, /). T 1990 academic Press. Inc.

in this paper, we investigate the set of positive contractions in
KL(L?, L"). Results presented here have the same character as the Krein-
Milman theorem. We approximate positive contractions on L7 by convex
combinations of norm attaining extreme positive contractions {Theorem ).
J. Hennefeld [17] proved that the unit ball of the space of compact
operators on /” is the norm closed convex hull of its extreme points for
t<p<oo, p#2. In Section2, we present approximation theorems for
positive contractions. Using Lindenstrauss’s result, we show that a certain
class of norm attaining operators is norm-dense. Next we prove that the
positive part of the unit ball of operators is the closure on the convex hul!
of the set of norm attaining extreme positive contractions in the strong
operator topology. The approximation theorems for operators on {* and
L=[0,1] are presented in [23,21,227. Note that the convex hull of
positive invertible isometries of L?[0, 1] is strong operator dense in the set
of positive contractions acting on L#[0, 17 (Corollary 1). This is reiated to
a result of J. R. Brown [31].

In Section4 we give a characterization of the norm attaining extreme
positive contractions in several cases. Note that this is related tc the
characterization of extreme doubly stochastic measures. From the facts
presented in [16] it follows that the locally affine structure of the positive
contractions in £ (L?(m), L"(n)) (1 <r< p< ¢} is similar to the structure
of doubly stochastic measures. Therefore in Section 3 we present those
properties of doubly stochastic matrices which we use in Section 4 for
the description of norm attaining extreme positive contractions in
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124 RYSZARD GRZASLEWICZ

L(L?(m), L' (n)). In the finite dimensional case, extreme positive contrac-
tions are characterized in [13]. We also prove that the norm attaining
extreme positive contractions are exposed points of the positive part of the
unit ball of operators.

1. TERMINOLOGY AND NOTATION

Let (X, o/, m) be a o-finite measure space. As usual, we denote by
L?(m), 1 < p<oo, the Banach lattice of all p-summable real-valued func-
tions on X with standard norm and order. If X={1,2,..,n}, n>cc
(X¥=N), and m is a counting measure we write /7 (/?) instead of L?(m).
If X=[0, 1] and m is the Lebesgue measure, we write briefly L7[0, 1]. In
the case of sequence /”-spaces, we denote by {e,} the canonical base (i.e.,
(ex);=04;). The cone of positive functions (f>0) in L?(m) is denoted
by LZ(m). The adjoint space [Lf(m)]’ is identified with L”(m),
where 1/p+1/p’=1. For feL?(m), we define its support by supp f=
{xe X: f(x)#0}. Note that supp f is defined modulo null sets.

Let 1<r<oc and let (Y, 4, n) be a o-finite measure space. We denote
by Z(L*?(m), L'(n)) the Banach space of all linear bounded operators from
L?(m) into L"(n). An operator is said to be positive (T > 0) if 7f > 0 when-
ever f 2 0. The set of all positive operators is denoted by &, (L?(m), L'(n)).
We denote the positive part of the unit ball of &, (L?(m), L'(n)) by £.
We define the support of a positive operator 7, denoted by supp 7, as a
maximal set 4< X such that 71,=0. We say that an operator
Te?, (L?(m), L'(n)) is elementary provided there are no non-zero
operators Ty, T, &, (L?(m), L'(n)) such that T=T,+ T, and (supp T{)n
(supp T3) = (supp T*) N (supp 75*) = & (cf. [16]).

For felL?”(m), gelL'(n) we denote by g® f the operator from
L(L*?(m), L'(n)) such that (g® f)A)= gjfh dm. Note that if supp f = X,
supp g =Y then g® f is an elementary operator. Also if 7> 85>0, and S
is elementary, then T is an elementary operator. For T'e #(L?(m), L'(n)),
we define its isometric domain as M(T)= {fe L?(m): |Tf|= T\ I fIl}. If
M(T)+ {0}, then we say that T is norm attaining. The properties of M(T)
and J(T)= {supp f: fe M(T)} are considered in [16].

To every operator Te #(I”,1") (or ¥(I7, 1)), there corresponds a
unique matrix (¢;) with real entries, such that (If),=3; ¢, f;. Clearly the
adjoint operator T*e . #(I",17) with 1/p+1/p'=1/r+1/r'=1 is deter-
mined in the same manner. by the transposed matrix. We identify an
operator with its matrix.

The graph G(T') of a matrix T'= (1;) is defined by the following formula.
To the ith row, there corresponds a (row) node x;, i=1, 2, .., and to the
Jth column, there corresponds a column node y;, j=1, 2, ... There is an
edge joining x, and y; if and only if ¢;#0.
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2. APPROXIMATION THEOREMS
The proposition below is a modification of Theorem 1 in [26].

PropOSITION 1. Let 1 <r< p<owc and let
A ={TeP (L?(m), L"(n)); Xe (T}, Ye J(T*)}.
Then A" is norm dense in £, {LP?(m), L"(n)}.

Proof. Let us fix ¢>0 and Toe % _(L*(m), L'(n)). Let felL”(m)
geL” (n) where |fli=ligl=1, suppf=2X, suppg=7Y. Put T=T7,+
¢g® f. Obviously | T— T,| =& Now we construct an operator T'e.1" such
that || T— 7|l <e. We use the construction given in the proof of Theorem 1
in [267. Assume without loss of generality that {7l =1, 0<e<1/3. We
choose first a monotonically decreasing sequence {¢, } of positive numbers
such that :

x o
2y e<e, 2 0)  ei<gg, e <1/10k,
i=1 i=k—1

k=1,2,... We next choose inductively sequences {7}, {f«}. L&} such

[§

that T, e L(L?(m), L'(n)), fr€ L% (m), g, € L"_(n) satisfying
=T
I T fill = 1 Tl — &3, ifel =1 k=12 ..
g T fi)= 11Ty filis iget=1 — k=L2 .
Teoh=Thte, glT.h) T fe, he LP(m), k=1,2,...

The sequence {T,} converges in norm to an operator T satisfying
(\T—Ti<e and T is a norm attaining operator {see the proof of
Theorem 1 in [26].)

Note that Ty, =Ty, k=1,2,... Thus T=lim T, > T>eg® f. We have
supp T =supp f = X, and supp T* =supp g = Y. Since the operator 7'is an
clementary operator, by Theorem 4 and S in {167, T attains its norm at a
function whose support is a whole space X, ie, XeJ(T). Similariy
YeJ(T*). Thus Te. .

Therefore there exists Te.4" such that |7 — Tl < 2.

By Theorem 2 in [127, it follows that the exireme positive contractions
7, which attain their norm at a function f with supp /' =supp T, are related
to the extreme doubly stochastic operators. The theorem below says that
the set of such a class of extreme positive contractions is large enough.
Really the set A" next 2 is smaller than this class of extreme operators.
Note that the zero operator belongs to 4" next 2.
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For fe L% (m), ge L'(n), we define
g ={Te L. (L?(m), L'(n)): Tf =g T*g" ~'=f7"", supp T=supp f}.
THEOREM 1. Let 1 <r< p < . Then the convex hull
conv( A Nnext )

is strong operator dense in the positive part of the unit sphere of
L(LP(m), L' (n)).

Proof. By Proposition 1, it is sufficient to show that for every
feL(m), geL’ (n), with ||f]|=|gll=1 the convex hull of ext./,
(c A" next 2) is strong operator dense in the convex set .7 ,. Since con-
vex sets have the same closure in the weak operator and strong operator
topologies [ 10, p. 447] all we need to show is that ./, is compact in the
weak operator topology. Let T belong to the closure in the weak operator
topology of /. and let the net T, e .o, converge to 7. The condition
1=(g "z, f>—><g ™", If ) implies that {g"~', Tf > = 1. By the strict
convexity of L’(n) we have Tf = g. The operator T attains its norm on f.
Hence T*g"~'=f?~! and supp T>supp f. For each ve L"(n) we have
{0, Ty Lisupp ¢ > =0. Thus <v, T1pp ryc> =0 and supp T <= supp f. There-
fore T'e s, ,, ie., o . is closed. The face o/ , is compact as a closed subset
of the ball (the ball is compact as a closed subset of the ball (the ball is
compact in the weak operator topology, since L is reflexive).

ProrosiTiON 2. Let LP(m) or L'(n) be an infinite dimensional space,
Then the convex hull of the positive part of the unit sphere in
L(L?(m), L'(n)) is norm dense in the set of positive contractions.

Proof. 1t is sufficient to show that 0 belongs to the closure of the
convex hull. Let L#(m) be infinite dimensional. We choose a sequence
{f.} of L% (m) such that |f,|=1 and the supports are disjoint. Let
ge L’ (n) be such that |g|l=1, and let T,=(1/n)3;_, g®ff '=
g®(1/n) X% _, ff 1. The operators T, are convex combinations of
elements of positive parts of the unit sphere. We have |7,]=
Ny Sn_, /27 M, = &/1r. Thus T,—0. In the case when L'(n) is
infinite dimensional we present analogous arguments.

If L?(m) and L’(n) are finite dimensional, then the statement of Proposi-
tion 2 is not true. Indeed, then #(L*?(m), L'(n)) can be identified with
L(If, 1%,). Since all norms are equivalent on a finite dimensional space,
there exist constants ¢,, ¢, >0 such that

¢y z Iyl < 1Tl <c, z [t
%) iLj
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If [T|=1and T>0, then }, ;1;> l/c,. Every operator in a convex huil
has a norm greater than ¢,/c,>0.

Remark 1. I LP(m) or L'(n) is infinite dimensional by Proposition 2
and Theorem 1 we obtain that the set conv(.{" next #) is strong operaior
dense in the set of positive contractions.

PropoSITION 3. Let 1<r<p<oc, and lei fe1710,1], ge L]0, 1
Junctions of norm one. Then the face s, is affinely isomorphic to ik
face o, .

1 L

[

oo

Proof. For a function he L°[0,1], 1 <s< o, we define a mapping
T, supp i— [0, 1] by

aX
t.(x)={ [A*dm.
0

The mapping 1, , is strictly increasing and onto. Hence it is invertible. New
we define operators S, S, by

(vlsuppf)(fa(x)\}

(80)(0) = —SEEEES,  ve1/[0,1]
(Sﬂ”ﬁﬁ={§XMd%Axn’ ;Zzgii
ue L0, 17]. The mapping
HT)=S,TS,

acts from ./ , into =/ ,. There exists ¢ ~' given by ¢ ~'(S)= R, SR, where

HE ) X Esu a
I 0
(0, x¢supp f
ve L7[0,17] and
1 g
(Rzll)(x) — (H suppg)(rg,r(x)) 42;

g(r;(x))

ue L'[0,1]. Indeed S;R,=R,S,=1
Consider now X=Y=[0,1] with Lebesgue measure and p=r. An

isometry on L” is an extreme contraction. Then positive invertible

isometries belong to the set .4". The set of positive invertible isometries on
L?10, 1] is a proper subset of 4" next 2.
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THEOREM 2. The set of positive invertible isometries on L?[0, 1] is weak
operator dense in the set of positive contractions.

Proof. The positive part of the unit sphere is weak operator dense in
the positive part of the unit ball. Indeed, let {g,} be a sequence of
L7 [0,17 such that ||g,|=1 and {g,} converges in weak topology to 0.
Let fe L2 [0, 1], with || f|| = 1. The sequence g,® f?~' converges to 0 in
the weak operator topology. Let R be a positive contraction. Let
2,€[0, 1] be such that R+ 4,g,® f? ![ = 1. The weak operator limit of
(R+4,8,® (7 ") is R.

Operators of norm 1, which attain that norm at functions which have
[0, 1] as a support, are norm dense in the positive part of the sphere
(Proposition 1). We need to show that the positive invertible isometries
are weak operator dense in ., for all f,geL%[0,1] such that
supp f'=supp g= [0, 1] and [[f]=g|=1

Let Se s .. Then T=R,SR, where R, R, are defined in (1), (2). The
face «/ ; coincides with the set of all doubly stochastic operators. The set
of positive invertible isometries generated by a measure-preserving transfor-
mation is weak operator dense in &/ ; [3, Theorem 17]. For Te o/ , there
exists a sequence of positive invertible isometries T, which converges to T.
Operators S, =R, 'T,R;* are positive invertible isometries on L?T0, 1].
For every ue L?[0,1] and ve L*[0, 1] we have <v, S,u> — v, Su), ie.,
S, converges to S in weak operator topology.

Since convex sets have the same closure in the weak and strong operator
topologies [ 10, p. 447] we obtain the following corollary.

COROLLARY 1. The convex hull of positive invertible isometries of
L?[0, 1] is strong operator dense in %

We remark that the convex hull of positive invertible isometries on
L'[0, 1] is strong operator dense in the set of all stochastic operators [18,
Corollary 1].

3. DoOUBLY STOCHASTIC MEASURES

Let (X, .o, u) and (Y, #,v) be o-finite measure spaces such that
w(X)=v(Y). A measure A on (Xx Y, o ®#) is called doubly stochastic
with respect to p and v if its marginal distributions coincide with y and v,
respectively (i, A(Ax ¥Y)=u(Ad), Ae o, (X xB)=v(B), Be #). The set
of all doubly stochastic measures with respect to u and v is denoted by
G(u, v)

If 4 and v are countable sums of atoms, then Z(y, v) can be identified
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I's

with the set of all doubly stochastic matrices P = ( p;;) with respect to u and

v (ie, pij>05 > Pijz.u({j}), Zj pij;—v({i})) ]
If 41, v are Lebesgue measures on X =Y = [0, 1], then the relatior

1
(A xB):j 1, Plydt

determines a one-to-one correspondence between 7{u, v} and the set of all
double stochastic operators P on L*[0, 1] (see [3], additional informa-
tion can be found in [27]). We recall that Pe L(L* [0, 1], L*[0,11) is
doubly stochastic if P>0, Pl=1, P*i=1 Note that I. V. Ryff {30
presented an integral representation of doubly stochastic operators.
Properties of doubly stochastic measures, operators, and matrices have
been studied by many authors. In particular the extreme points of Z{j, v}
have been characterized in certain cases. In the simples case (p and v
are counting measures on {1,2,..#x}), by the well-known theorem of
G. Birkhoff [ 5] the set of extreme points coincides with the set of aii
permutation matrices. The following fact is well known (see [24, 1, 8, 287})

PROPERTY 1. Let X=Y=N, and let p(N}y=w(N)<wx. The mairix
P={(p;)e%2(p,v) is extreme if and only if the connected componenis of the
graph G(P) are trees.

The proof of the above property can be found aiso in [ 15, Corollary 17
Note that the finiteness of the measures i and v in the assumption of
Property ! cannot be omitted (see [157). We recall that a matrix
PeZ(pu, v) is said to be uniquely determined in Z{y, v} by its graph
provided there is no matrix R# P in 2(y, v) such that the graph G(R} is
a subgraph of G(P). In [15], the following fact is proved.

PROPERTY 2. Let X=Y=N and let ,u(l\,}—"{N )< oc. Then the extreme
points of & (1, v) are those mairices in Gy, v} umci- are uniquely derer-
mined in Z(p, v) by their graph.

in case of a finite support of u and v, the Properties { and 2 were known
earlier (see [11,7,19,6]),

In the continuous case (u and v are Lebesgue measures on [, 17}, 2
description of extreme doubly stochastic measures was presented independ-
ently by Dougles [9] and Lindenstrauss [253. The conjecture that extreme
doubly stochastic measures on [0, 1]x [0, 1] are supported graphs of
measurable maps or that extreme doubly stochastic operators are
generated by invertible measure preserving transformations {as a naiural
generalization of permutation matrices) turns out not to be true. Th
geometric structure of extreme doubly stochastic measures is mors com-
plicated. V. Losert [ 27] presented an example of extreme doubly stcchastic

('D ,-
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measures on [0, 1% [0, 1], whose support is the whole space. The set of
operators generated by invertible measure preserving transformations is &
propet subset of the set of extreme doubly stochastic operators. The convex
hull of the set of operators generated by invertible measure preserving
transformations is dense in the set of doubly stochastic operators in the
L*-strong operator topology (see [2]) and in the L'-strong operator
topology (see [207). The problem of characterization of doubly stochastic
measures on [0, 17x [0, 1] in terms of measure theory remains open;
however, some partial results are known {see [4, 317).

4. EXTREME PosITIVE CONTRACTION

In this section, we consider extreme points of the positive part of the unit
ball of #(/?,1"). In particular we show that the graph of the extreme
positive contraction is a tree. The form of the graph of a matrix does not
characterize extreme points. We also give a description of operators in
A7 next 2. Obviously, if one of the spaces L7 or L is finite dimensional,
then each operator in Z(L”, L") is norm attaining and .4" next 2 =ext #.
Therefore our result is an extension of the result for finite dimensionai
spaces presented in [13]. Generally 4" next 2 s#ext 2. Note that for
I <r< p< o every operator in Z(/”, {"} is compact {29, 5.1.27, 50 norm
attaining. In this case .4" in Theorem 3 can be omitted.

THEOREM 3. Let 0#£Te L. (P, 1)V A, I<r<p<xc. Then Te 4" n
ext 2 if and only Tl =1 and the connected components of the grapk G(7'}
are Irees.

Proof. Let 0#Te A" next?. Then |IT| =1, and there exists a vector
f=1{(J;) such that | fi| =1Tf| =1, f =0, supp f =supp 7. Obviously, 7" is
also an extreme point of the face

A= {ReL (1" I"): Rf=Tf, R*(TfY ' =f7 ", supp R=supp T}.
1 TS 3 5

By Theorem 2 in [13], A, is affinely isomorphic to Z(u, v} where
w iy =17, v({j})=(If);. The measures y, v are countable sums of
atoms. We have supppucN, suppsc N, and u(N)=32 f7=|fll,=

VT, =3, (Tf); = (N) < oc. Thus the matrix P=(p;} defined by
py=(TfY " t;f;

is extreme in Z(y, v). The graphs G{7) and G(P) coincide. Thus, by
Property 1, the connected components of G{T') are trees.

Now assume that the connected components of the graph G(T), Te .4,
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are trees and {Tl=1 Let f be such that |fi=I17fli=1, /=0,
supp f=supp T. Then Peext Z(u, v), where u, v, p, are defined as above.
Because Z(u, v) and o ;, are affinely isomorphic, we obtain 7eext o -,
so T is extreme.

CororLary 2. Let Te L (IJ, 1N or Te Z (I7,iI ) I<r<p<, and
let | T)=1. Then T is an extreme positive contraction if and only if the
connected components of the graph G(T'} are trees and supp Te T {T).

Remark 2. Let l<r<p<oc, and let fel”, gei” be such that
(fl=lgl=1 f>0, g>0. Definec measures s and v of N by u{{j}}= /7
v({i})=g!. The face

sdyy={ReZ, (17, I'): Rf = g, R*g' ' = f7~*, supp R=supp f }

of the unit ball of ({7, 7") is affinely isomorphic to Z(u. v} (Theorem Z i
{13]). Because the elements of ext Z(u, v} are uniquely determined in
Z(u, v} by their graphs (Property2), also the operator Teext.w, is
uniquely determined in <, by its graph G{T). Therefore for a positive
contraction T such that Tf = g, and supp f =supp 7, if the graph G{T) has
no cycle, then T is uniquely determined by f, g, and G{T').

THEOREM 4. Let TeZ, ({7, L7[0,1]), n<cc, 1<p T is am
extreme positive contraction if and only if |Teil =0 or 1, j= ‘l 2, ey H, QT
the sets supp Te,, supp Te,, .., supp Te, are disjoint aubsem of {

({e;}7_, is the canonical base of 17).

Proof. We have supp T'= {j: Te;#0} and supp T*=73"supp T¢;. it is
easy to see that each Te % (/7, L"[O 113} can be represented as a finite
sum of some nonzero elementary operators 7, 7=3_| T, with supp 7,
disjoint and supp T* disjoint. We have Te ex‘/?” if and only if every
T.eexp?. Assume that T is extreme. Let f, >0 be such tha
Ifl=lT. fil =1 Then e,=3%_, f,/(so)"? is such that |yl = 1 Tegll =f

idJ sl

and supp ¢,=supp 7. Put ;> 0 such that e; = y %¢;. Obviously %, < 1
Suppose, to get a condmon that supp Te, » sapp T e,# . Put £>0
E, E,< [0, 1] such that min(Te,, Te,) Zelp g, gli= 11510, an

E,nE,= (. We define an operator Re #(I7, L?[0, 1]} by
Rey=aB,€ g~ 2Bl
Rey= —a\frel g+ o Bely,

Re,=0 if j=3

where f,= (1, (Teg)? '), i=1,2. Obvicusly |8} =11, (Te}? ' )ix
izl [{Te)? M, <1 It is easy to see that TiR>0 We Tha
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R#0, Rey=0, and R*(Tey)” '=0. Because (T+R)e,=Te, and
(T+ R)Y*(Teoy)?~'=ef ™!, by Proposition 1 in [16], we have ||T+ R/ < 1.
Thus T is not extreme. This contradiction shows that supp Te; are disjoint.
Now it is easy to see that [Te;| =0 or 1. Obviously, if Te 2 is such that
| Tesli =0 or 1 and supp Te, are disjoint, then T is extreme.

THEOREM 5. Let 0#Te % ({7, L][0,1]), n<oo, 1<r<p<oo. Then

T is an extreme positive contraction if and only if |T| =1 and supp Te,,
j=1,2, .., n, are disjoint.

Proof. Suppose that 0+# Teext #. Then |T|| =1, and by Theorem 3
in [16], there exists e¢q=3"; x,e;>0 such that [le,| = |Te,| = 1. Suppose
that supp Te, nsupp Te,# . Put >0, E, E,c[0,1], B,,B, such
that min(7e,, Te;) 2 el g oy INgll=Mgl#0, E nE,=g, B;=
(g, (Teg)  '><1,i=1,2. We have T+ R>0 for Ree(fr1,—f,15)®
(x5e; —2€,). By Proposition 1 in 1 in [16] we have |T+ Rj| <1, since
Rey,=0 and R*(Te,)"~'=0. Thus T+ Re 2 and R +#0. This contradiction
proves that supp Te; are disjoint.

Now assume that |T| =1 and supp Te; are disjoint. Suppose that
T+ Re? for some ReZ(i7, L'[0,1]). The sets supp Re; are disjoint,
since supp Te; are disjoint. By Theorem 3 in [16], there exists e,=
>, %e;=0 such that |le)| = Teo|=1, suppe,=supp 7. By the strict
convexity of L'[0,1] we obtain Rey=0. Thus 0=3;a;Re; and by the
disjointness of supp Re;, we get Re;=0. Therefore T is extreme.

As a consequence of Theorems4 and 5 we obtain the following
corollaries.

COROLLARY 3. Let Te Z(L*?[0,1],17), n<oc, l<p<oo. Then T is
an extreme positive contraction if and only if T has the form
T=%]_,e;®g; where 0< g;e L”[0, 1] such that supp g; are disjoint and
lgl=0or 1.

CoroLLARY 4. Let Te Z(L?[0,1],1)), n<oo, l<r<p<oo. Then T
is an extreme positive contraction if and only if |T!| =1 and T has the form
> 1¢,®g; where 0< g;e L?[0, 1] with disjoint supports.

Using the same arguments as those from the proof of Theorems 4 and 5
we can obtain the following theorems.

THeEOREM 6. Let O # T e 4" n L. (I7,L"[0,1]) (or Te A& N
L, (L°[0,1],17)) 1< p<oo. Then Te A" next 2 if and only if T (or T*)
has the form 3.7, g;®e; where g;e L*[0, 1] have disjoint supports and
gl =0 or 1.
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ToeOREM 7. Let Te A N L. (P, L'[0, 1 (or Te A" ZF (LP[O, L LI
i<r<p<ow.ThenTe N nextP ifandonly if \Th=1and T (or T*)} has
the form Z}:a g1 ®e; where g;e L', [0, 17 have disjoint supports.

Remark 3. Because a compact operator on the L’f-space is norm
attaining, directly from the above characterizations of points of 4" next 2,
one could obtain corresponding characterizations of extreme points of the
positive part of the unit ball of the space of all Lompact operators. The
characterization remains the same as in Theorems 3, 5. and 7

Now we describe the graph G(7T') of all extreme positive contractions in
L(1¢,i"). The connected components of G{T), Tcexp #, are irees
l<r< p<x. It should be pointed out that the form of the graph G{7T}
does not characterize extreme positive contractions {see Example in |

THEOREM 8. Let T be an extreme positive comtraction in L7 i7),
t<#< p< . Then the graph G(T') has no cycle.

Proof. Suppose that G(T) has a simple cycle C. Let J, denote the
projection in £(/?, [7) defined by

I €, lf k <n
Er = :
’ G, otherwise

Let # be sufficiently large (i.e., G(T,) includes C, where T, =TI ). Note
that T, are finite dimensional operators and not extre'ne It is not {n icuit
1o see tha;. for T, there exists S,=(s}) such that |T,+ S, <{7,]
T,+8,20, the graph G(S,)=C, and 1., = 157! for some !;io,J

Choose a subsequence n, ~ > such that lim, _ s =5, exist for all {i
io

Note that siﬂéO for some (i, /), ie, S, h‘;;#() it is easy

Nt S, )= (TS0 /1 =0

for all fel? Hence [T+S,;<!. We have T+5,>0. Therchore
T+ S,e#, ie, T is not extreme.

Note that the characterization of the extreme positive contractions in
PP IP, 1< p< o, is presented in [127.

5. EXprOSED PoInNTS

Let O be a convex set. We recall that g, € Q is exposed if there exists a
linear functional ¢ such that &(g,)> &(g) for all ge Q4 {q}. An exposed
point g€ Q is called strongly exposed if for any sequence g, € O the condi-
tion &(g,)— &(q,) implies g, — g,. Each exposed point is extreme. Note
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that each extreme positive contraction in LI/, 10), nm<oc
I <r< p<oc, is strongly exposed (see Theorem 4 in [13]).

THEOREM 9. Let l<r<p<x. Let TeZL(U?1l"). If Te A nextP,
then T is exposed but T is not a strongly exposed point of 2.

Proof. It is easy to see that T=0 is exposed. Let 0# T e 4" next 2.
Denote by fel” such that |Tf||=|f =1, f=0, supp f=supp I. Put
£;>0, 1,j=1,2,3,.., such that X, e;<oc. Then T is exposed by a
functional ¢ defined by

E(S)= S, (Tf)r‘1>_Zsi/’sij(1 —sign ;)

S=(s;)eZ(/%,1"). Indeed, if S 1is a positive contraction, then
< IS (T <1 and {(T)=1.

Now suppose that £(S)=1 for some positive contraction S = (s;). Then
Sf=Tf and s5;=0 for all (i, /) such that ¢;=0. Thus Se ./, and the
graph G(S) is included in the graph G(T'). Because T is uniquely deter-
mined by f, Tf, G(T), we obtain T'=2S5 (Remark 2). Thus 7 is exposed.

Now suppose that certain 0 # 7'e A" next 2 is strongly exposed by func-
tional ¢ and |7} =¢&(T)= 1. In view of Theorem 3 in each (except at most
one) column of (t;) there exist infinitely many zero entries. Therefore there

exists a sequence {(i,, )}, such that i, <i,,;, jo<Jns1. 1,;,=0,
n=1,23,... Define R, = (rz) b
t;, if i=i,
ri=-<1y if j=j,
0 otherwise.
Obviously 0<¥™ R, <T for all nyeN, so |7 , R,l<1. Thus

> E(R,)< 1. We have ¢(R,) =0, since T— R, is a positive contraction
and 1—¢&(R,)=&T— R,)< 1. Therefore {(R,,) tends to 0 as » tends to oc.

Let N, be an arbitrary finite subset of N. Because ¥, v, ¢, ®e¢, is a
positive contraction, we have Y, v, {(e; ®¢; )< 1. Thus ¢(e;, ®e¢;) tends
to 0 as # tends to . Put 7,=7T— R, +e ,®e; tends to 0 as n tends
to oc. Put 7, =T~ R, +e, ® e, We have T,, 20, T, <1, and
E(T,)=E(T)—&(R,) +E(e,®e,) ~" L but | T,— T| = fie, @ e, — R, > 1.
This contradiction proves that T is not a strongly exposed point of Z.
Using analogous arguments it is easy to see that 7=0 is also not strongly
exposed.

The same situation as in Theorem 8 exists when we consider the unit ball
of #(1%17) (see [14]).
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