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Let 1< r ~ p < 'X). Approximation theorems for positive contractions in
!l'(LP(m), L'(nl) are presented. The characterization of norm attaining extreme
positive contractions is given. Note that these extreme operators are also exposed
points of the positive part of the unit baH of !l'(fP, I'). r 1990 Academic Press. Inc.

In this paper, we investigate the set of posmve contractions in
.P(LP, L r

). Results presented here have the same character as the Krein­
Milman theorem. We approximate positive contractions on LP by convex
combinations of norm attaining extreme positive contractions (Theorem 1).
J. Hennefeld [17] proved that the unit ball of the space of compact
operators on I P is the norm closed convex huH of its extreme points for
1~ P < ':N, P i= 2. In Section 2, we present approximation theorems for
positive contractions. Using Lindenstrauss's result, we show that a certain
class of norm attaining operators is norm .dense. Next we prove that the
positive part of the unit ball of operators is the closure on the convex huE
of the set of norm attaining extreme positive contractions in the strong
operator topology. The approximation theorems for operators on 1:C and
L ocTO, 1] are presented in [23,21,22]. Note that the convex hull of
positive invertible isometries of LP[O, 1] is strong operator dense in the set
of positive contractions acting on LP[O, 1] (Coroilary 1). This is related to
a result of J. R. Brown [3].

In Section 4 we give a characterization of the norm attaining extreme
positive contractions in several cases. Note that this is related to the
characterization of extreme doubly stochastic measures. From the facts
presented in [16] it follows that the locally affine structure ofthe positive
contractions in .P(LP(m), L'(n)) (l < r ~ p < -::f) is simiiar to the structure
of doubly stochastic measures. Therefore in Section 3 we present those
properties of doubly stochastic matrices which we use in Section 4 for
the description of norm attaining extreme positive contractions in
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2(LP(m), Lr(n)). In the finite dimensional case, extreme positive contrac­
tions are characterized in [13]. We also prove that the norm attaining
extreme positive contractions are exposed points of the positive part of the
unit ball of operators.

1. TERMINOLOGY A"'D NOTATION

Let (X, .91, m) be a a-finite measure space. As usual, we denote by
LP(m), 1~ P < 00 , the Banach lattice of all p-summable real-valued func­
tions on X with standard norm and order. If X = {I, 2, ..., n}, n> oc
(X = N), and m is a counting measure we write 1% (fP) instead of LP(m).
If X = [0, 1J and m is the Lebesgue measure, we writebriefly L pea, 1]. In
the case of sequence fP-spaces, we denote by {ed the canonical base (i.e.,
(ed;=bkJ The cone of positive functions (f~0) in LP(m) is denoted
by L~(m). The adjoint space [LP(m)J' is identified with LP'(m),
where l/p + l/p' = 1. For IE LP(m), we define its support by supp1=
{xEX:j(x);60}. Note that sUPP/is defined modulo null sets.

Let 1~ r < <X; and let (Y, f!4, n) be a a-finite measure space. We denote
by 2(LP(m), Lr(n)) the Banach space of all linear bounded operators from
LP(m) into Lr(n). An operator is said to be positive (T~O) if T/~O when­
ever I ~ 0. The set of all positive operators is denoted by 2+ (LP(m), U(n)).
We denote the positive part of the unit ball of 2+(LP(m), U(n)) by f!JJ.
We define the support of a positive operator T, denoted by supp T, as a
maximal set A c X such that TI A , = 0. We say that an operator
T E 2+ (LP(m), Lr(n)) is elementary provided there are no non-zero
operators Tl> T 2 E 2+ (LP(m), Lr(n)) such that T= T, + T 2 and (supp T,) n
(supp T2 ) = (supp Tn n (supp Tn =0 (cf. [16J).

For IELP'(m), gELr(n) we denote by g®1 the operator from
2(L P(m), U(n)) such that (g ® f)(h) = g JIh dm. Note that if supp f = X,
supp g = Y then g ® f is an elementary operator. Also if T ~ S ~ 0, and S
is elementary, then T is an elementary operator. For T E 2(LP(m), Lr(n)),
we define its isometric domain as M(T)= {JELP(m): II Till = II TIl UII}. If
M( T);6 {O}, then we say that T is norm attaining. The properties of M( T)
and J( T) = {supp f: f E M( T)} are considered in [16].

To every operator TE 2(fP, n (or 2(1%, I:)), there corresponds a
unique matrix (tij) with real entries, such that (Tf)i =Lj tijjj. Clearly the
adjoint operator T* E 2(1", fP') with l/p + l/p' = l/r + l/r' = 1 is deter­
mined in the same manner by the transposed matrix. We identify an
operator with its matrix.

The graph G(T) of a matrix T= (tij) is defined by the following formula.
To the ith row, there corresponds a (row) node Xi' i= 1, 2, , and to the
jth column, there corresponds a column node Yj' j = 1, 2, There is an
edge joining Xi and J'j if and only if tij;6 O.
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2. ApPROXI~IA TIO~ THEOREMS

The proposition below is a modification of Theorem 1 in [26].

PROPOSITION 1. Let 1< r ~ p < X) and let

~V = {TE 2+{LP(m), Lr(n)); XEJ(T), YEJ(T*)}.

125

Then ,V is norm dense in Sf+(LP(m), Lr(n)).

Proof Let us fix 8>0 and ToESf,(U(m),Lr(n)). Let fEL~(m),

gE V_en) where 1:111 = !Igil = 1, supp f = X, supp g= Y. Put T= T,,-4­
8g &; f Obviously liT- Toll = 8. Now we construct an operator tEA' such
that I: t - Til < 8. We use the construction given in the proof of Theorem 1
in [26]. Assume· without loss of generality that Ii Til = 1, 0 < e< 1/3. We
choose first a monotonically decreasing sequence {ek } of positive numbers
such that

xc

2 I. e; < e,
i=1

xc

2 l: 8; < ek, ek < 1/l0k,
;=k-l

k = 1, 2, .... We next choose inductively sequences {Td, Ud, {gd slich
that Tk E2(LP(m), Lr(n)),fkEL~(m),gkEV:(n) satisfying

T 1 =T

II Tdkll ~ I: Tkli - eL
gk(Tkfk) = ilTkfkll,

k= 1, 2, ...

k= 1, 2, ...

k= 1, 2, ....

The sequence {Td converges in norm to an operator t satisfying
Ii f - Ti.1 < e and f is a norm attaining operator (see the proof of
Theorem 1 in [26].)

Note that Tk + 1~ Tk , k= 1, 2, .... Thus t= lim Tk ~ T~ eg&;f. We have
supp f = supp f = X, and supp f* = supp g = Y. Since the operator T is an
elementary operator, by Theorem 4 and 5 in [16J, t attains its norm at a
function whose support is a whole space X, i.e., X E i( f). Similarly
YEJ(T*). Thus fE.A'.

Therefore there exists f E./V such that ;\ f - Tali < 2".

By Theorem 2 in [12], it follows that the extreme positive contractions
T, which attain their norm at a function f with supp f = supp T, are related
to the extreme doubly stochastic operators. The theorem below says that
the set of such a class of extreme positive contractions is large enough.
Really the set JV next f!li is smaller than this class of extreme operators.
Note that the zero operator belongs to ,I" next lr.



126 RYSZARD GRZ~SLEWICZ

For fEL~(m),gEr(n), we define

d.r.g = {TE !l'-,-(LP(m), L'(n)): Tf = g, T*g,-I = jP- t, supp T= supp f}.

THEOREM 1. Let 1< r:::;; p < co. Then the convex hull

cortv(AI' next 9)

is strong operator dense in the positive part oj the unit sphere oj
!l'(LP(m), L'(n)).

Proof By Proposition 1, it is sufficient to show that for every
J E L ~ (m), gEL 'r (n), with IIJ:I = II gl! = 1 the convex hull of ext d.r. g

(c </,V -'- next 9) is strong operator dense in the convex set d.r. g' Since con­
vex sets have the same closure in the weak operator and strong operator
topologies [10, p.447] all we need to show is that ~~ g is compact in the
weak operator topology. Let T belong to the closure in the weak operator
topology of d.r. g and let the net T~ E d.r. g converge to T. The condition
1 = (g'- t, zJ) ~ (g'- t, TJ) implies that (gr- I, TJ) = 1. By the strict
convexity of L'(n) we have TJ = g. The operator T attains its norm on f
Hence T*gr-l=jP-I and suppT::::::lsupp! For each vELr'(n) we have
(v, T~ 1(suPPflc) = O. Thus (v, T1(suPPf)c) = 0 and supp Tc supp! There­
fore T E~; g' i,e" ~; g is closed. The face d.r. g is compact as a closed subset
of the ball (the ball is compact as a closed subset of the ball (the ball is
compact in the weak operator topology, since LP is reflexive).

PROPOSITION 2. Let LP(m) or L'(n) be an infinite dimensional space,
Then the convex hull oj the positive part oj the unit sphere in
!l'(LP(m), r(n)) is norm dense in the set oj positive contractions.

Proof It is sufficient to show that 0 belongs to the closure of the
convex hull. Let LP(m) be infinite dimensional. We choose a sequence
Un} of L~(m) such that IIJnl1 = 1 and the supports are disjoint Let
gEL'r(n) be such that Ilgli=l, and let Tn=(l/n)Lk=1 g@Jf- l =
g@ (l/n) Lk = 1 Jf -I. The operators Tn are convex combinations of
elements of positive parts of the unit sphere. We have II Tn II =
lI(l/n)Lk~Ift'--lllp'=~' Thus Tn~O. In the case when r(n) is
infinite dimensional we present analogous arguments.

If LP(m) and Lr(n) are finite dimensional, then the statement of Proposi­
tion 2 is not true. Indeed, then !l'(LP(m), £'(n)) can be identified with
!l'(lf

1
, I~J Since all norms are equivalent on a finite dimensional space,

there exist constants c l , Cz > 0 such that

{.j i,j
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If iiT!l=l and T~O, then L:i,jtij~1!c2' Every operator in a convex hull
has a norm greater than cI!c2> 0.

Remark 1. If L P(m) or L'(n) is infinite dimensional by Proposition 2
and Theorem 1 we obtain that the set conv(uV (\ ext 2f!) is strong operator
dense in the set of positive contractions.

PROPOSITION 3. Let 1 < r ~ p < ex;, and let f E LP[O, 1], g E LTO, 1J be
functions of norm one. Then the face <~; g is affinel}' isomorphic to the
face dl. l '

Proof For a function hE £'[0, 1], 1< s < 7), we define a mapping
r h,5 : supp h ---+ [0, 1] by

rhjx) = IX ihls dm,
'0

The mapping 't h•5 is strictly increasing and onto. Hence it is invertible. New
we define operators S I' S 2 by

XESUpp g

x¢supp g

U E LTO, 1]. The mapping

acts from di,! into dt,g. There exists r/J-I given by (,6-1(5) = R2 SR; where

FELP[O,1] and

)l) ff( x) F( r f; p(x)),
(R v x = .

1 ,. ,-0,
XEsuppf

xtt supp f
(1)

(2)(R ll)(X) = (u1suppg)(r;:;(x))
2 g(r;;(x))

llEL'[O, 1]. Indeed S[R 1 =R2 S 2 =1.

Consider now X = Y = [0, 1] with Lebesgue measure and p = r. An
isometry on LP is an extreme contraction. Then positive invertible
isometries belong to the set uV. The set of positive invertible isometries on
LP[O, 1] is a proper subset of uV (\ ext rJ>.
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THEOREM 2. The set ofpositive invertible isometries on L P[0, 1] is I1leak
operator dense in the set of positive contractions.

Proof The positive part of the unit sphere is weak operator dense in
the positive part of the unit ball. Indeed, let {g,,} be a sequence of
L~[O, 1] such that Ilgn!1 = 1 and {gn} converges in weak topology to O.
LetfEL~[O, 1], with 1111I = 1. The sequence g,,®jP-I converges to 0 in
the weak operator topology. Let R be a positive contraction. Let
)." E [0, 1] be such that I! R +)"" g" ® jP -- III = 1. The weak operator limit of
(R+Angn®jP-I) is R.

Operators of norm 1, which attain that norm at functions which have
[0, 1] as a support, are norm dense in the positive part of the sphere
(Proposition 1). We need to show that the positive invertible isometries
are weak operator dense in sit, g for all f, gEL ~ [0, 1] such that
supp f = supp g= [0, 1] and Ilfll = II gil = 1.

Let SE~.g. Then T=R 2 SR , where R
"

R 2 are defined in (1), (2). The
face ~.I coincides with the set of all doubly stochastic operators. The set
of positive invertible isometries generated by a measure-preserving transfor­
mation is weak operator dense in d l ,l [3, Theorem 1]. For TEdl,1 there
exists a sequence of positive invertible isometries T" which converges to T.
Operators Sn=R;lTnRi' are positive invertible isometries on LPlo, 1].
For every uELP[O, 1] and vELP[O, 1] we have <v, Snu) ~ <v, Su), i.e.,
Sn converges to S in weak operator topology.

Since convex sets have the same closure in the weak and strong operator
topologies [10, p.447] we obtain the following corollary.

COROLLARY 1. The convex hull of positive invertible isometries of
LP[O, 1] is strong operator dense in PJ>

We remark that the convex hull of positive invertible isometries on
L 1[0, 1] is strong operator dense in the set of all stochastic operators [18,
Corollary 1].

3. DOUBLY STOCHASTIC MEASURES

Let (X, d, fl) and (Y, /16, v) be <I-finite measure spaces such that
fleX) = v( Y). A measure A. on (X x Y, d ® /16) is called doubly stochastic
with respect to fl and v if its marginal distributions coincide with fl and v,
respectively (i.e., ;,(A x Y) = fl(A), A E ,s;{, i(Xx B) = v(B), BE /36). The set
of all doubly stochastic measures with respect to fl and v is denoted by
g(p, v).

If p and v are countable sums of atoms, then g(fl, v) can be identified
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with the set of aU doubly stochastic matrices P = (p ij) with respect to Ii anc
\' (i.e., Pij~O, :L Pij= 11( U}), Lj Pij= v( {i} i)·

If p, v are Lebesgue measures on X = Y= [0, 1], then the relation

J.(A x B) =r lAPis dt
o

determines a one-to-one correspondence between fi'(/1, v) and the set of all
double stochastic operators P on LX> [0, 1J (see [3], additional informa­
tion can be found in [2]). We recan that PE2(L X [O, l],LX[O, 1J) is
doubly stochastic if P ~ 0, PI = 1, P* i = 1. Note that J. V. Ryff [30 j
presented an integral representation of doubly stochastic operators.

Properties of doubly stochastic measures, operators, and matrices have
been studied by many authors. In particular the extreme points of 2:(j1., "1')

have been characterized in certain cases. In the simples case (Jl and v
are counting measuKes on {I, 2, ..., 1"1}), by the well-known theorem of
G. Birkhoff [5J the set of extreme points coincides with the set of ail
permutation matrices. The following fact is wen known (see [24, 1, 8, 28J).

PROPERTY 1. Let X= Y=N, and let jl(N)=v(N)<:x:;. The matrix
P = (Pij) E 2:(Il, v) is extreme if and only if the connected components of the
graph G(P) are trees.

The proof of the above property can be found also in [15, Corollary 1J.
Note that the finiteness of the measures jl and v in the assumption of
Property 1 cannot be omitted (see [15J). We recan that a matrix
P E f0(J1, v) is said to be uniquely determined in f2'(p, v) by its graph
provided there is no matrix R #- P in f/(fl., v) such that the graph G(R) is
a subgraph of G(P). In [15J, the following fact is proved.

PROPERTY 2. Let X = Y = N and let fl.(N) = v(N) < x. Then the extreme
points of q (p, v) are those matrices in 2(fl, v) which are uniquely deter­
mined in !?i(fl., v) by their graph.

In case of a finite support of fl. and v, the Properties 1 and 2 were known
earlier (see [11,7, 19, 6J),

In the continuous case (/1 and v are Lebesgue measures on [0, 1J), a
description of extreme doubly stochastic measures was presented independ­
ently by Dougles [9J and Lindenstrauss [25]. The conjecture that extreme
doubly stochastic measures on [0, 1J x [0, 1] are supported graphs of
measurable maps or that extreme doubly stochastic operators are
generated by invertible measure preserving transformations (as a natural
generalization of permutation matrices) turns out not to be true. The
geometric structure of extreme doubly stochastic measures is more com­
plicated. V. Losert [27J presented an example of extreme doubly stcchastic
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measures on [0, 1] x [0, 1], whose support is the whole space. The set of
operators generated by invertible measure preserving transformations is a
propet subset of the set of extreme doubly stochastic operators. The convex
hull of the set of operators generated by invertible measure preserving
transformations is dense in the set of doubly stochastic operators in the
U-strong operator topology (see [2]) and in the L l-strong operator
topology (see [20]). The problem of characterization of doubly stochastic
measures on [0, 1] x [0, 1] in terms of measure theory remains open;
however, some partial results are known (see [4, 31 J).

4. EXTREME POSITIVE CO~TRACTIO~

In this section, we consider extreme points of the positive part of the unit
ball of SfU .0, n. In particular we show that the graph of the extreme
positive contraction is a tree. The form of the graph of a matrix does not
characterize extreme points. We also give a description of operators in
A" next !J. Obviously, if one of the spaces LP or L' is finite dimensionaL
then each operator in Sf(LP, L r

) is norm attaining and vY next 2P = ext PJ.
Therefore our result is an extension of the result for finite dimensional
spaces presented in [13]. Generally vi'" next 9 # ext 9. Note that for
1 < r < p <x every operator in Sf(lP, n is compact [29, 5.1.2], so norm
attaining. In this case A' in Theorem 3 can be omitted.

THEOREM 3. Let °=1= T E Sf-L (l .0, l') n A', 1< r ~ p < x'. Then T LV n
ext [ijJ if and only il T Ii = 1 and the connected components of the graph G( T J
are trees.

Proof Let °=1= T E vI'" next 9. Then !i T \i = 1, and there exists a vector
1= (fj) such that \iIil = !! TIll = 1, I ~ 0, supp I = supp T Obviously, T is
also an extreme point of the face

SlfTf= {R E !f;'+([P, l'): RI= Tj, R*(TIr- 1 =JP -1, supp R = supp T}.

By Theorem 2 in [13], AI, Tf is affineiy isomorphic to g(ji, v) whe:,e
j1( {j} ) =If, v( {j} )= (Tf)~. The measures j1, v are countable sums of
atoms. We have suppjlcN, suppucN, and jl(N)=Ljff=iif!i p =

II Tn r = Li (Tf)~= r( N ) < a:J. Thus the matrix P = (p (i) defined by

is extreme in f0(j1, v). The graphs G(T) and G(P) coincIde. Thus, by
Property 1, the connected components of G(T) are trees.

Now assume that the connected components of the graph G(T), TE,-,V,
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are trees and IITII = 1. Let j be such that il!!i = liT!Ii = 1, f?J>;O,
Stipp f = supp T. Then P E ext f2'(I1, v), where p, v, Pif are defined as above.
Because q(l1, v) and ~:Tf are affinely isomorphic, we obtain T E ext .s#;Jf;

so T is extreme.

COROLLARY 2. Let TE!i'+U;:, lr)(or TEf£+(lP, I:,)) 1 <r:S;.p<x, and
let II T!i = 1. Then T is an extreme positive contraction if and only if the
connected components of the graph G(T) are trees and supp TE Y(T).

Remark 2. Let 1 < r:S;. p < oc, and let f E i P, g E {r be such that
Ut:! = Ii g:1 = 1, f> 0, g > 0. Define measures it and v of N by pi U} )=It
v( {i}) = g~. The face .

d,r.g = {RE !i'+(lP, r): Rj = g, R*gr~ I =p-', supp R= suppj}

of the unit ball of !i'(lP, n is affinely isomorphic to :?i(i-'. v) (Theorem 2 in
[13]). Because the elements of ext [2:(11, v) are uniquely determined in
fi(Jl, v) by their graphs (Property 2), also the operator T E ext cCVr, g is
uniquely determined in 4. g by its graph G( T). Therefore for a positive
contraction T such that Tf = g, and supp f = supp T, if the graph G( T) has
no cycle, then T is uniquely determined by f, g, and G(n.

THEORE:\14. Let TE2+(I,~,LP[O,1]), n<oc, l~p<%. Tis an
extreme positive contraction if and on(v if !I Tejl! = 0 or 1, j = 1, 2, ,.., n, and
the sets supp Tel' supp Te 2 , •••, supp Ten are disjoint subsets of [O,lJ
({ej }J= 1 is the canonical base of I:;).

Proof We have supp T = {j: Tej =f o} and supp T* = In supp Tej . It is
easy to see that each T E !i'+ (l;:, L P [0, 1]) can be represented as a finite
sum of some nonzero elementary operators T" T = I:o~ [ Ts with supp T,
disjoint and supp Ts* disjoint. We have T E ext f!JJ if and only if ever)
TsE exp &. Assume that T is extreme. Let Is;::: 0 be such thai
ilfsl! = Ii TJsii = 1. Then eo = L:O= I fsl(so)lp is such that lieoil = i! Tee I! = J

and supp eo = supp T. Put 'Y.j > 0 such that eo = I]= 1 'Xjej. Obviously xj:S;. 1
Suppose, to get a condition, that supp Tel n supp Te2 =f 0. Put E> 0

£1> E2 c [0, 1J such that min(Te[, Te2)?J>;dElc.,E2' :i1£,11 = il1£211 'fO, an~

£[ nE2 = 0. We define an operator RE!i'U%, LP[O, 1]) by

if j?J>; 3,

where Pi=<l£,,(TeOV-I), i=I,2. Obviously iPil=!<lEi,(Tey~l>i~

ii1d! !i(TeY-[ll p ':s;'1. It is easy to see that T±R;:::O. We ha'
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R"#O, Reo=O, and R*(Teoy-I=O. Because (T±R)eo=Teo and
(T ± R)*(Teo)P-1 = eg- 1, by Proposition 1 in [16J, we have II T± Rj! ::::; 1.
Thus T is not extreme. This contradiction shows that supp Te i are disjoint.
Now it is easy to see that I! Tejll = °or 1. Obviously, if T E jJ is such that
II Tejli =°or 1 and supp Tej are disjoint, then T is extreme.

THEORBf 5. Let 0"# T E.!fl-r (I,f, LTO, 1J), n < 00, 1< r::::; p < 00. Then
T is an extreme positive contraction if and only if Ii TIl = 1 and supp Tej ,
j= 1, 2, ..., n, are disjoint.

Proof Suppose that 0"# T E ext?J>. Then II T:I = 1, and by Theorem 3
in [16J, there exists eo = Lj ':tjej ):°such that [leol[ = [I Teo[1 = 1. Suppose
that supp Te1nsupp Te2"# 0. Put e>O, £1'£2 c [0,lJ, f31,f32 such
that min(Tel,Te2)):e1EluE2' III E ,II= i!l EJ "#0, £In£2=0, f3i=
<lEI' (Teoy-I)::::; 1, i = 1, 2. We have T ± R):°for R E e(f32 1E, - f311E2) ®
(O:2el-':t1e2)' By Proposition 1 in 1 in [16J we have [IT±Ri[::::;I, since
Reo = °and R*(Teoy-1 = 0. Thus T± R E?J> and R"# 0. This contradiction
proves that supp Tej are disjoint.

Now assume that II TI[ = 1 and supp Tej are disjoint. Suppose that
T ± R E?J> for some R E.!fl(l::, LTO, 1J). The sets supp Rej are disjoint,
since supp Tej are disjoint. By Theorem 3 in [16J, there exists eo =
Lj Ctjej ):° such that lleoll = II Teol[ = 1, supp eo = supp T. By the strict
convexity of LTO, 1J we obtain Reo = 0. Thus °= Lj ':tjRej and by the
disjointness of supp Rej, we get Rej = 0. Therefore T is extreme.

As a consequence of Theorems 4 and 5 we obtain the following
corollaries.

COROLLARY 3. Let TE.!fl(LP[O, 1J,I:;), n<CI:;, l<p<oo. Then Tis
an extreme positive contraction if and only if T has the form.
T= 'L.j~1ej® gj where 0::::; gjE LP[O, 1J such that supp gj are disjoint and
I!g)1 = 001' 1.

COROLLARY 4. Let TE .!fl(LP[O, 1J, l~), n < 00, 1 < r < p < 00. Then T
is an extreme positive contraction if and only if il Til = 1and T has the form
'L.j~ 1 ej ® gj' where 0::::; gj E L P[0, 1J with disjoint supports.

Using the same arguments as those from the proof of Theorems 4 and 5
we can obtain the following theorems.

THEOREM 6. Let 0"# T E uV n .!fl+(fP, LP[O, IJ) (or T E vI" n
.!fl+(LP[O, 1J, fP)) 1 < P < 00. Then TE X next 9 if and on(r if T (or T*)
has the form Lj"~d gj®ej where gjELP[O, IJ have disjoint supports and
IIg)1 =0 or 1.
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THEOREM 7. Let TE ./1," n !£+W, LTG, 1J) (or TE vI' n Sf+(U' [0, 1], l'))
1 < r < p < 'T:. Then TEo"" next g> if and only if it Til = 1 and T (or T *)has
the form 2:J~ 1 g 1 ® ej where gj E L r

., [0, 1] hare disjoint supports.

Remark 3. Because a compact operator on the LP-space is norm
attaining, directly from the above characterizations of points of .A' (1 ext 2J!,
one could obtain corresponding characterizations of extreme points of the
positive part of the unit bail of the space of all compact operators. The
characterization remains the same as in Theorems 3, 5, and 7.

Now we describe the graph G( T) of all extreme positive contractions in
!£(l P, I'). The connected components of G( T), T E exp .9, are trees fer
1 < r ~ p < T:. It should be pointed out that the form of the graph G{ T)

does not characterize extreme positive contractions (see Example in [13]).

THEOREM 8. Let T be an extreme positive contraction in Sf(fP, I'),
1< r~ p < x'. Then the graph G( T) has no cycle.

Proof Suppose that G( T) has a simple cycle C. Let In denote the
projection in !£(lP, IP) defined by

if k~n

otherwise.

Let n be sufficiently large (i.e., G( Tn) includes C, where Tn = TIn)' Note
that Tn are finite dimensional operators and not extreme. It is not difficuit
to see that for Tn there exists Sn = (sij) such that ii Tn ± Snll ~ \1 Tn! ~ 1,
Tn ± S,,::::: 0, the graph G(Sn) = C, and ti'de = !s;~jo! for some (in, in) E C.
Choose a subsequence nk 7'X such that lim k ~ ex sij = s~ exist for all U,n.
Note that s~ # 0 for some (i, j), i.e., So(s~} # O. It is easy to see that

li(Tn,±Sn<l!- (T± Soln~ 0

for all fEI P
• Hence liT±Soi; ~ 1. We have T±So:::::O. There;'ore

T + So E fJJ, i.e., T is not extreme.

Note that the characterization of the extreme positive contractions ,I:

!F(iP, !P), 1 < P <T:, is presented in [12].

5. EXPOSED POINTS

Let Q be a convex set. We recall that qo E Q is exposed if there exists a
hnear functional ~ such that ~(qo»~(q) for all qEQ\,{qo}. An exposed
point qo E Q is called strongly exposed if for any sequence qn E Q the condi­
tion ~(qn) -+ ~(qol implies qn -+ qo. Each exposed point is extreme. Note
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if i= in

if i=in

otherwise.

that each extreme posItIve contraction in 2(1::, I'",), n, m < rx:,
1< r~ p < rx:, is strongly exposed (see Theorem 4 in [13]).

THEOREM 9. Let 1 < r~ p < x. Let TE 2(1P, r). If TE AI' next:?JJ,
then T is exposed but T is not a strongly exposed point of :?JJ.

Proof It is easy to see that T =°is exposed. Let 0# TEA' next :?JJ.
Denote by f E fP such that II Tfll = !Ifli = 1, f?; 0, supp f = supp T. Put
6ij> 0, i, i = 1, 2, 3, ..., such that Li.) 6ij < x. Then T is exposed by a
functional ~ defined by

~(S) = (Sf, (Tfy-l >- I 6 ijSij(l- sign tij)
i.}

S= (sij) E 2(fP, I'). Indeed, if S is a positive contraction, then
1~(S)I~IISfllli(TfY-'li~1 and ~(T)=1.

Now suppose that ~(S) = 1 for some positive contraction S = (sij)' Then
Sf = Tf and sij = °for all (i, i) such that tij = 0. Thus S E sf;; Tf and the
graph G(S) is included in the graph G(T). Because T is uniquely deter­
mined by f, Tf, G(T), we obtain T= S (Remark 2). Thus T is exposed.

Now suppose that certain 0# TE A' next:?JJ is strongly exposed by func­
tional ~ and II Til = ~(T) = 1. In view of Theorem 3 in each (except at most
one) column of (tij) there exist infinitely many zero entries. Therefore there
exists a sequence {(in, in)):~ 1 such that in < in + I' in < in + 1, t i.)n = 0,
n = 1, 2, 3, .... Define R n = (rij) by

'ij~n:
Obviously °~ L~O~ 1 R n~ T for all no EN, so iIL~o= I Rni! ~ 1. Thus
L~o~ 1 ~(Rn) ~ 1. We have ~(Rn)?; 0, since T - R n is a positive contraction
and 1- ~(Rn) = ~(T - R n)~ 1. Therefore ~(Rn) tends to °as n tends to ,x;.

Let No be an arbitrary finite subset of N. Because L:nE No e i• ® e). is a
positive contraction, we have LnE No ~(ei. ® e)J ~ 1. Thus ~(ein ® e)J tends
to °as n tends to x. Put Tn = T - R n+ e i• ® ej" tends to °as n tends
to x. Put Tn = T - R n + ei• ® ej,,' We have Tn ?; 0, IJTnil ~ 1, and
~(Tn) = ~(T) - ~(R,J + ~(ein ® ejJ ~n 1, but II Tn - Til = liein ® ejn - Rn'l ?; 1.
This contradiction proves that T is not a strongly exposed point of f!JJ.
Using analogous arguments it is easy to see that T= °is also not strongly
exposed.

The same situation as in Theorem 8 exists when we consider the unit ball
of 2W, 12

) (see [14]).
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